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1. Introduction

We consider the problem of optimal routing of messages in a communication

network so as to minimize average delay per message. We primarily have in

mind a situation where the statistics of external traffic inputs change

slowly with time as described in the paper by Gallager [1]. While algo-

rithms of the type to be described can also be used for centralized com-

putation, we place primary emphasis on algorithms that are well suited

for distributed computation

Two critical requirements for the success of a distributed routing

algorithm are speed of convergence and relative insensitivity of performance

to variations in the statistics of external traffic inputs. Unfortunately

the algorithm of [1] is not entirely satisfactory in these respects.

In particular it is impossible to select in this algorithm a stepsize that

will guarantee convergence and good rate of convergence for a broad range

of external traffic inputs. The work described in this paper was motivated

primarily by this consideration.

A standard approach for improving the rate of convergence and

facilitating stepsize selection in optimization algorithms is to scale

the descent direction using second derivatives of the objective function

as for example in Newton's method. This is also the approach taken here.

On the other hand the straightforward use of Newton's method is inappropriate

for our problem primarily because of large dimensionality. We have thus

introduced various approximations to Newton's method which exploit the

network structure of the problem and facilitate distributed computation.

In Section 2 we describe a broad class of algorithms for minium

delay routing. This class is patterned after a gradient projection method



for nonlinear programming [2],[3] as explained in [4], and contains as a

special case Gallager's original algorithm except for a variation in the

definition of a blocked node [compare with equation (15) of [1]]. This

variation is essential in order to avoid unnecessary complications in the

statement and operation of our algorithms and despite, its seemingly minor

significance, it has necessitated a major divergence in the proof of con-

vergence from the corresponding proof of f!].

Section 3 describes in more detail a particular algorithm from the

class of Section 2. This algorithm employs second derivatives in a

manner which approximates a constrained version of Newton's method (3]

and is well suited for distributed computation.

The algorithm of Section 3 seems to work well for most quasistatic

routing problems likely to appear in practice as extensive computational

experience has shown [5]. However there are situations where the unity

stepsize employed by this algorithm may be inappropriate. In Section 4

we present another distributed algorithm which automatically corrects this

potential difficulty whenever it arises at the expense of additional com-

putation per iteration. This algorithm also employs second derivatives,

and is based on minimizing at each iteration a suitable upper bound to a

quadratic approximation of the objective function.

Proofs of convergence have been relegated to Appendices.

Both algorithms of Sections 3 and 4 have been tested extensively and

computational results have been documented in [5] and [6]. These

results substantiate the a.- ions made here regarding the practical

properties of the algorithms. There are also other related second
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derivative algorithms (7],[8] that operate in the space of path flows

and exhiibit similar behavior as the ones of this paper. These algorithms

are well suited for centralized computation and virtual circuit networks

but, in contrast with the ones of the present paper, require global information

at each node regarding the network topology and the total flow on each link.

We finally mention that while we have restricted attention to the

problem of routing, the algorithms of this paper can be applied to other

problems of interest in communication networks. For example problems of

optimal adaptive flow control or combined routing and flow control have

been formulated in (91, (10] as nonlinear multicoiodity flow problems of

the type considered here, and the algorithms of this paper are suitable

for their solution.
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2. A Class of Routing Algorithms

Consider a network consisting of N nodes denoted by 1,2,...,N and L

directed links. The set of links is denoted by L . We denote by (i,)

the link from node i to node k and assume that the network is connected

in the sense that for any two nodes m,n there is a directed path from m to

n. The flow on each link (i,k) for any destination j is denoted by f i(j).

The total flow on each link (i,k) is denoted by F. i.e.
N !

F f
j=l

The vector of all flows f. (j), (i,L)EL. j = 1,...,N is denoted by f.

We are interested in numerical solution of the following multicommodity

network flow problem:

minimize L Di£(F.i) (MFP)

subject to f it - fMI(j) r rI(j),X1(
IeO(i)

Vi = l,...,N, i j

f. 0, Y(i,)eL , i = 1,...,N, j =

f.£U) = 0, v (j,.)L , j = ... ,N,

where, for i A j, ri(j) is a known traffic input at node i destined for j,

and 0(i) and I(i) are the sets of nodes t for which (i,)CL and (.,i)eL

respectively.

The standing assumptions throughout the paper are:
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a) r-(j) > 0, ij 1,...,N, i # j

b) Each function DiE is defined on an interval [0,Ci£) where Ci£ is either a

positive number (the link capacity) or ; is twice continuously

differentiable on (O,Ci£). The first and second derivatives of D.it) -it

at zero are defined by taking the limit from the rignt. Furthermore

Dit is convex, continuous, and his strictly positive first and

second derivatives on [0,Ci3.

c) (MFP) has at least one feasible solution. f satisfying F. < C
it it

for all (i,Z)EL.

For notational convenience in describing various algorithms we will

suppress in what follows the destination index and concentrate on a single

destination chosen for concreteness to be node N. Our definitions, opti-

mality conditions, and algorithms are essentially identical for each

destination, so this notational simplification should not become a source

of confusion. In the case where there are multiple destinations it is

possible to implement our algorithns in at least two different ways.

Either iterate simultaneously for all destinations (the "all-at-once"

version), or iterate sequentially one destination at a time in a cyclic

manner with intermediate readjustment of link flows (the "one-at-atimel"

version). The remainder of our notation follows in large measure the one

employed in [1]. In addition all vectors will be considered to be column

vectors, transposition will be denot ed by a superscript T, and the standard

Euclidean norm of a vector will be denoted by 1-1 , i.e. Tx = lxj 2 for

any vector x. Vector inequalities are meant to be componentwise, i.e. for

x = (xl,... ,x) we write x > 0 if x. > 0 for all i = 1,..., n.

Let t. be the total incoming traffic at node i

= r i + f , i = 1,...,N-1, (L)
mON(i)
m#N
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and for t. 0 let *i.be the fraction of t. that :-avels on link (i,Z)

i t

Then it is possible to reformulate the problem in terms of the variables

kas follows 1].

For each node ijN we fix an order of the outgoing links (i,2.), ZeO~i).

We identify with each collection {4)i,~.(i,zQL, i=i,...,N-l} a column

T T Tvector 4 (4 l 4 2"z ) l),where 4.is the column vector with coordinates

Xe.O(i). Let

Y£o0(i) i

(2)

and let 4) be the subset of $consisting of all 4) for which ther'e exists a

directed path i,).,(N)from every node i = 1,.. .,N-1 to the destination

N along which 4) >0..,m > 0. Clearly 4) and 4) are convex sets, and
it

the closure of 4) is t. It is shown in [1] that for every #0~ and

r = (rl,r 2'...,rNl1) with i. O, i = 1,...,N-1 there exist unique

vectors t(4)r) = (t I(0,), .. ,t N-1C(0,r)) and f(4),r) with coordinates

f i(4t ) (i,X,)eL, i ji N satisfying

t(4)r) >0. f(4),r) > 0

= r r. f(4r) i=
mi~i
mON

9. it (0.(r) - i f(,r) = nt

mAN

f ()) = (4,))i 1 ,...,N-1, (i-,)eL.
it1



Furthermore the functions t(Pr), f(O,r) are twice continuously dif-

ferentiable in the relative interior of their domain of definition

$x{rjr > 01. The derivatives at the relative boundary can also be defined

by taking the limit through the relative interior. Furthermore for every

r > 0 and every f which is feasible for (MFP) there exists a #4 such

that f = f(o,r).

It follows from the above discussion that the problem can be written

in terms of the variables it as

minimize D(¢,r) D it [f i(,r)] (3)

subject to OeO,

where we write D( ,r) - c if fl(U,r) > Cit for some (i,t)cL.

Similarly as in [1], our algorithms generate sequences of loopfree

routing variables € and this allows efficient computation of various

derivatives of D. Thus for a given

#0 w,? sa) that node k is downstream from node i if there is a directed

path from i to k, and for every link (1,m) on the path we have m > 0.

We say that node i is upstream from node k if k is downstream from i. We

say that is loopfree if there is no pair of nodes i,k such that i is

both upstream and downstream from k. For any pe and r > 0 for which
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D( ,r)< the partial derivatives can be computed using the follow-

ing equations [1]

D t.(D! + (it)£L, i = l,...,N-l (4)

D = + .i(D !2+ ), i = l,...,N-l (5)
ir it( 2T

DrN itit 3

where D! denotes the first derivative of Di. with respect to fi. The
aD D

equations above uniquely determine and --L  and their computation

is particularly simple if is loopfree. In a distributed setting each

ZD aD

node i computes and D via (4), (S) after receiving the value of

D fro lIL s
from all its immediate downstream neighbors. Because is loopfree

the computation can be organized in a deadlock-free manner starting from

the destination node N and proceeding upstream [1].

A necessary condition for optimality is given by (see [1])

3D 3in 3D if > 0

it MEO(i) 1i

_D > min if = 0,

where all derivatives are evaluated at the optimum. In view of (f., this

condition can be written for t. > 01
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D=+a min (D! +.- if~ > 0
it r I MEO(i)im zr

D' > >min (D! if =0i R. ar am Br 7)0z me0 (a) U'

combining these relations with (5) w~e have that if t. 0 then

__=min a. (6)

where

6. =D! - V MdJ(i) (7)am am ar

In fact if (6) holds for all i (whether t. 0 or t-. > 0) then it is suf-

ficient to guarantee optimality (see [1], Theorem 3).

We consider the class of algora'.hms

k+l = k k il, .,-(8
+ 11 (8

k k
where, for each i, the vector AOwith comp~onents AO IEO~i) is any

solution of the problem

min-nze 6-0) + Ro- (9)
I a i Ic i

ksubject to 4.+At. , =00. 1o 0

k
AO 0, kC.B(i;4).

The scalar ai is a positive parame-cer. The vector 6. has components

[cf. (7)][~~ ~ ~~ kc o~~ V.e(i)

6 D ! a r
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k k T T
where all derivatives are evaluated at 0 and fQP ,r).. and (or A4 .) denotes

transpose of 6i(or A i, For each i for which ti4 k,r) > 0, the matrix M

is some symmetric matrix which is positive definite on the subspace

{V~l [ ,. =o 0, i.e.
2 eo(i)

vTM v. >0, v. #0, o
S 0 0O(i) v 0.

This condition guarantees that the solution to problem (9) exists and is

unique. For nodes i for which t.(k ,r) = 0 the definition of is immaterial.ka

The set of indices B(i;¢ k) is specified in the following definition:

Definition: For any #0 and i=l,...N-l the set Bti;), referred to as
the set of blocked nodes for _ ati, is the set of all £.0(i) such that

= 0, and either <D,r) < " r , or there exists a link (m,n)ar i  - a
referred to as an improper link such that m=2 or m is downstream of Z

and we have < >, <
m n-

Ic t -nk+1
It is shown below that if k is loopfree, then generated by the

algorithm is also loopiree. Thus the algorithm generates a sequence of loop-

-0free routings if the starting o is loobfree. We refer to (1] for a

Rescription of the method for generating the sets B(i;d ) in a manner

suitable for distributed computation. Our definition of B(i;4 k) differs

from the one of [1] primarily in that a special device that facilitated the

proof of convergence given in [1] is not emploved (compare with equ. (IS) of (I]).

We nrw demonstrate some of the properties of the algorithm in the

following proposition.

k k
Proposition 1: a) If P is loopfree then € is loopfree.

b) If k is loopfr e and AO = 0 solves problem (9) then k is optimal.
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c) If k is optimal then 4k+ is also optimal.

d) If A k  0 for some i for which t ( k ,r) > 0 then there exists a

positive scalar n k such that

D()k + A4)k r) < D(kr), Vfle(Onk]"

Proof: a) Assume that 4k+i is not loopfree and there exists a sequence

k+l
of links forming a directed loop a!,- ,ich 4) is positive. Then

3D(k rk k
there must exist a link (m,n) cn the loop for which (sr) < Dr

m n

From the definition of B(m;4 k" we must have mn > 0 and hence (m,n) is an

improper link. Now move backwards around the loop to the first link

k ic
(i,Z) for which Oik = 0. Such a link must exist since ;) is loopfree.

Since Z, is upstream of m and (m,n) is improper, we have ZsB(i; k ) which
k+l

contradicts the hypothesis 4)k, > 0.

b) If A k = 0 solves problem (9) then we must have .A). 0 for each

i and L i satisfying the constraints of (9)

AOi  > 4ik = O, VXCB(i; )k).

91 (10)

By writing Ai = i-4k and using (5), (7) we have
1 i

6iZ
4k

DD > O.D,-i-D
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k
By considering 1 = individually for each £Up.(i;ok), we obtain

3Dk
< x B(i;pk).

From (5) and (7) then

iir.= 6i , %{ B(i;cpk),with ki >0O.

Since D' > 0 for all (i,Z)eL it follows from (5),(7) and the relation above that
ik

there are no improper links, and using the definition of B(i;S ) we

obtain

- = min 6
ari £o(i) it

which is a sufficient condition for optimality of k [cf. (6)].

c) If 4k is optimal then from the necessary condition for optimality (6) we

have that for all i with t. > 0
1

D = min 6.
3ri nO0(i) I

It follows using a reverse argument to the one in b) above that

Ak = 0 if t i > 0.

Since changing only routing variables of nodes i for which t. = 0 does
1

not affect the flow through each link we have D(S ,r) = D(k ,r) and

k+l is optimal.
d) Since &k is positive semidefinite for all i with t. > 0 and Ak is a

.15 1. i i

solution Qf problem (9) we have

,6 Fk < 0

k
If t. > 0 then M. is positive definite on the appropriate subspace and
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the solution of problem (9) unique, so if in addition Ad 1 0 then we

have

iAOk < 0.

Using the fact [cf. (4),(7)]

2D
1

we obtain that

aDT k <0

Hence AOk is a direction of descent at 0k and the result follows. Q.E.D.

The following proposition is the main convergence result regarding

algorithm (8), (9). Its proof is quite complex and is given in Appendix

A. The proposition applies to the multiple destination case in the

"all-at-once" and the "one-at-a-time" version.

0
Proposition 2: Let the initial routing o be loopfree and satisfy

0D( ,r) < D where D is some scalar. Assume also that there exist two
-0 U

positive scalars X,A such that the sequences of matrices {Mk} satisfy the

following two conditions:

a) The absolute value of each element of Mk is bounded above by A.1

b) There holds

Xv.i1< v.

for all vi in the subspac3 {vj l k vi = 01.

Then there exists a positive scalar a (depending on Do, X, and A) such

that for all

--------------------
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ae(0,] and k=0,1,... the sequence {5k} generated by algorithm (8),(9)

satisfies

D(O k+1,r) £ D(5 ,r) , lir D(¢k,r) = miin D-,r).

Furthermore every limit point of {k is an optimal solution of problem

(3).

Another interesting result which will not be given here but can be

found in [11] states that, after a finite number of iterations, improper

links do not appear further in the algorithm so that for rate of con-

vergence analysis purposes the potential presence of improper links

can be ignored. Based on this fact it can be shown under a mild

assumption that for the single destination case the rate of convergence

of the algorithm is linear [11].

The class of algorithms (8),(9) is quite broad since different

k
choices of matrices M. yield different algorithms. A specific choice

of M yields Gallager's algorithm [1] (except for the difference in

the definition of B(i; k) mentioned earlier]. This choice is

the one for which Mk is diagonal with all elements along the diagonal1

being unity except the (T,T)th element which is zero where T is a node

for which

Sa£ = min 6it

We leave the verification of this fact to the reader. In the next

section we describe a specific algorithm involving a choice of Mk based

on second derivatives of D i. The convergence result of Proposition 2

is applicable to this algorithm.
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3. An Algorithm Based on Second Derivatives

A drawback of the algorithm of [1] is that a proper range of the

stepsize parameter a is hard to determine. In order for the algorithm

to have guaranteed convergence for a broad range of inputs r, one must

take a quite small but this.will lead to a poor speed of convergence for

most of these inputs. It appears that in this respect a better choice

of the matrices Mr. can be based on second derivatives. This tends to

make the algorithm to a large extent scale free, and for most problems

likely to appear in practice, a choice of the stepsize a near unity

results in both convergence and reasonably good speed of convergence for

a broad range of inputs r. This is supported by extensive computational

experience some of which is reported in [5] and [6].

We use the notation

2V]

We have already assumed that Di is positive in the set [O,Ci£). We -ould l.ke

to choose the matrices i to be diagonal with t 2  2D(kr) along the

diagonal. This corresponds to an approximation of a constrained version

of Newton's method (see [3]), where the off-diagonal terms of the Hessian

matrix of D are set to zero. This type of approximated version of

Newton's method is often employed in solving large scale unconstrained
2D

optimization pzoblems. Unfortunately the second derivatives 2

are difficult to compute. However, it is possible to compute easily

upper and lower boupds to them which, as shcwn by computational ex-

d
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perilnenes, are sufficiently accurate for practical purposes.

Calculation of Upper and Lower Bounds to Second Derivatives

29 D
We compute -,evaluated at a loopfree 00', for all links

(i Z-) eL fo -..±ch £UB i; 4). We have using (4)

an - - t (D! +

Since tjtB(i;O) and 0 is loopfree, the node 2Z is not upstream of i. It
at. an!'

follows that =0 and i2.= ,,ti. Using again the fact that L~is

ati. 2.D

not upstream of i we have 0 ,...& 0 and it follows that

a2D a a-- ti (D! I + t 2D
3r 2 3r ~ 2  ar [r 2

Thus we finally obtain

2 2

i-. (M r2-+

A little thought shows that the second derivative B D is given by

the more general formula j,2

2

2- D qjke (mDtk vk~ Z 2,m=l,.. .,N-1 (12)

where qj k (2-) is the portion of a unit of flow originating at 2I which

goes through link (j,k). However calculation of using this
a2
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formula is complicated, and in fact there seems to be no easy way to

compute this second derivative. However upper and lower bounds to it

can be easily computed as we now show. By using (5) we obtain

(D

2 3rR x ak m rM

Since is loopfree we have that if > 0 then m is not upstream of

at 3D'

Z and therefore - = 1 and = D" A similar reasoning shows
ar r Z AM

that

2 2
a D { (D 'In 8D a D

Drr 8%r '-Xn D. r' i Yn 3%rr2. m m n n n n

Combining the above relations we obtain

2 2 2

a DoaD 2D

Since 3 rr > 0, by setting 3r r to zero for min we obtain the
a n man

lower bound

2 ,D" a2 D
M [3r ]

By applying the Cauchy-Schwartz inequality in conjunction with (12) we

also obtain

2 tT2 2a3D D_ a2D
3rm3rn - r 2

_ a_ -2 [B n I- ---- ~-=--=---~
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Using this fact in (13) we obtain the upper bound

_21
S42 D +2

It is now easy to see that we have for all kc

where and Rare generated by

2= = (16)R

2. 2

bond o.,T fo, UB(i;4)) are obtained simultaneoulsy by

means of the equation [cf. (11)]

t2 (D + ~ (17)

= (1) +R2.). (18)

It is to be noted that in some situations occuring frequently in practice

the uprand lower bomd li and Fper - jV coincide and are equal to the true
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second derivative. 1is will occur if * aD = 0 for mn. For
mn

example if the routing pattern is as shown in Figure 1 (only links that
carry flow are shown) then 1i =  all . 1ati£]2

=

Figure .

A typical case where - P and the discrepancy affects materially'

the algorithm to be presented is when flow originating at i splits and

joins again twice on its way to N as shown in Figure 2.
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Figure 2

The Algorithm

The following algorithm seems to be a reasonable choice. If ti / 0

we take N . in (9) to be the diagonal matrix with - R.i along the2 iZ
diagonal whe:e is the upper bound computed from (18) and (14)-(16) and

a is a positive scalar chosen e.perimentally. (Inmost cases a=l is satisfactory.)

Convergence of this algorithm can be easily established by verifying that

the assumption of Proposition 2 is satisfied. A variation of the method

results if we use in place of the upper bound i the average of the
0. +~ i.2.

upper and lower bounds -2 This however requires additional2 "

computation and communication between modes.

Problem (9) can be written for t. L 0 as1

minimize (6{ A}
1 (19)

k
subject to A) > -i XA = 0, Ai= 0 VRZB(i; )

and can be solved using a Lagrange multiplier technique. By introducing

the expression (18) for (D and carrying out the straightforward calculation

we can write the corresponding iteration (8) as
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k+l = (20)

where i is a Lagrange multiplier determined from the condition

kk Ua-{,1)
max{ } . (21)

19B (0 ;k i t (Dt' +R )

The equation above is piecewise linear in the single variable ]I and is

nearly trivial computatinnally. Note from (20) that a plays the role

of a stepsize parameter.

It can be seen that (20) is such that all routing variables 6

such that 6 < P will be increased or stay fixed at unity, while all

routing variables such that 6 i > U will be decreased or stay fixed

at zero. In particular the routing variable with smallest 6 will either

be increased or stay fixed at unity, similarly as in Gallager's algorithm.
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4. An Algorithm Based on an Upper Bound to Newton's Method

While the introduction of a diagonal scaling based on second

deriiiatives alleviates substantially the problem of stepsize selection,

it is still possible that in some iterations a unity stepsize will not

lead to a reduction of the objective function and may even cause divergence

of the algorithm of the previous section. This can be corrected by using

a smILller stepsize as shown in Proposition 2 but the proper range of

step~size magnitude depends on the network topology and may not be easy to

determine. This dependence stems from the replacement of the Hessian

matrix of I) by a diagonal approximation which in turn facilitates the

computation of upper bounds to second derivatives in a distributed manner.

Neglecting the off-diagonal terms of the Hessian means that while operat-

ing the algorithm for one destination we ignore changes which are caused

by other destinations. The potential difficulties resulting from this

can be alleviated (and for most practical problems eliminated) by operat-

ing the algorithm in a "one-at-a-time"e version as discussed in Section 2.

However the effect of neglecting the off-diagonal terms can still be

detrimental in some situations such as the one depicted by Figure 3. Here

rI -r 2 -r. r4 
> O, r5 -r 6 =0 and node 7

2

_____________
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is the only destination. If the algorithm of the previous section is

applied to this example with a=l, then it can be verified that each of

the nodes 1,2,3 and 4 will adjust its routing variables according to

what would be Newton's method if all other variables remained unchanged.

If we assume symmetri%; initial conditions and that the first and second

derivatives D 7 , D"7 and D 7 D"7 are much larger than the correspond-

ing derivatives of all other links, then the algorithm would lead to a

change of flow about four times larger than appropriate. Thus for

example a value of a = 1/4 is appropriate, while acl can lead tu

divergence.

The algorithm proposed in this sect:ion bypasses these difficulties

at the expense of additional computation per iteration. We show that if

the initial flow vector is near optimal then the algoritm is gaaranteed to

reduce the value of the objective function at each iteration and to con-

verge to the optimum with a unity stepsize. The algorithm "upper bounds"

a quadratic approximation to the objective function D. This is done by

fir5t making a trial change in the routing variables using aigorithm

(8),(9). The link flows that would result from this change are then, calcu-

lated going from the "most upstream" nodes downstream towards the destination.

Based on the calculated flows the algorithm "senses" situations like the one in

Figure 5 a.d automatically "reduces" the stepsize. We describe the algo-

rithm for the case of a single destination (node N). The algorithm for

the case of more than one destination consists of sequences of single

destination iterations whereby all destinations are taken up cyclically

(i.e. the one-at-a-time mode of operation).

___ = -J-~~



The Algorithm

At the typical iteration of the algorithm we have a vector of loop-

free routing variables t and a corresponding flow vector f. We first

carry out iteration (8),(9) with the choice of r. described in SectionI

3 and a unity stepsize, and obtain a trial increment of routing variables

denoted by A4*. Based on Ae* we calculate the new (and final) increment of

routing variables A$ and the new routing vector

*= + A(22)

by means of a procedure of the following type. Each node i computes the
corresvonding vector Gf routing variable increments A. by solving a

problem of the form

minimize S (A$i ) (23)

subject to the constraints

&hz > 0 ifAW* > 0 (24a)
iit

ciz < 0 if Ao¢t  < G (24b)

A = 0 if Ai z - 0 (24c)

- = 0(24d)

q + ik >- (2e)

where Q-(A.) is a quadratic function of AA- which depends on o and AS*

and will be defined shortly. Notice that the constraint (24) guarantees

that the new vector of routing variables is loopfree. In what follows

we describe the procedure and rationale for obtaining the form of the

quadratic function Qi of (23), and show that all comutations can be
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carried out in a distributed manner.

Let AF denote an increment of flow such that f + Af is feasible.

A constrained version of Newton's method [3] is obtained if Af is chosen

to minimize the quadratic objective function

N(Af D! ( (2i5)
I i , 1 2t (25

sub3ect to f + AfF where F is the set of all feasible flow vectors.

Let A# be the change in # that corresponds to Af. We write

==

Finally let t and At be the vectors of tctal incoming traffic at the

networl. nodes and corresponding changes [cf. (1)]. Then we have

Ati Af (26)

Afiz = AtK + t Ai.. (27)

Substic'ting (27) in (25) we obtain

N(Af) V Dj AtiF + I D! tiA (28)
i,Z i,2

I  D"I [(At.~ .£2 + Mti iO + tiA ip) 2 ]
i, it it
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DL6 = D! + D''tt.A Z (29)

By multiplying (30) by At, summing over i and using (27) we obtain

At DAt

i I -- 1 i -U ! i - . . .

i. . . . . . . .. 1,2,i-

= DAt. - f A t

s Z is --. Z0

U! Ati AtD + t tAt D'

*L. '2,N

1,2.k

By using this relation together with (29) we an write (28) as

N(Af) = X tA. (D! + Dk)

SD£i£ i 2._ ---

Z i ,£it

+ D' [At 2i 2 tAt) 1 + 12)

2 2 1.£

2 Z i ti i£) i£) 2 ] } (31)

Now if (Ati)2 were available then we could conceive of a recursive scheme

whereby node i would obtain the vector AOi which minimizes the correspond-

ing term in the right hand side of (31) after receiving the value of D

from its downstream neighbors Z, and in fact it can be seen that such a

computation can be carried out in distributed fashion starting from the

destination and proceeding upstream similarly as for algorithm (8), (9).
2

Unfortunately (Ati) depends on the values of A4m for nodes m that lie

upstream of i. To bypass this difficulty we develop in what follows an

upper bound for the troublesome term D~i (Ati . 2 by making use ofi,2.
the increment AO* obtained through an iteration of algorithm (M),(9). When

this upperbound is substituted in (31) we will obtain an upper bound to
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N(tM) of the form

where Q.(Ao.) is precisely the expression to be used in the algorithmn

[cf. (23)].

:I

Let us define for all i =1,... ,N-l, (i,2.)eL aid AO satisfying the

constraint (24)

+, (32)
1iit i ImnOA~I

Z max(0,A0F.2 ) , O Imin(0,AO 2 )1 (33)

=X AO* + At*Q 2 0 ~Q (34)

Att- + tA At*-, (35)

1!

Alt. 2. tqAA +At( 2,. + AO4i)I (36)
1

At. = A i +At- Aci)] (37)
1 2

The quantities n At are well defined by virtue of the fact that the
1 1

set of links

Li = {(i,)ALi > 0, or + .AO!> 01

forms an acyclic network [in view of the manner that the sets of blocked

nodes B(4;i) are defined in algorithm (8),(9)). As a result At+ and

1:

Ate are zero for all nodes i which are the -most upstream t in this

acyclic network. Starting from these nodes and proceeding downstream

the computation of At?+ and At - can be carried out in a distributed

1 177



manner for all nodes i using (34) and (35). Similarly [in view of the

constraint (24)] the quantities At+,At are well defined. It can be

easily seen that for all i we have

As a result it follows that

2 + 2 -2(At. < At) + (At. . (38)

+22We will develop upper bounds to the terms (At.) and (At-.). TO

this end we need the following lemma the straightforward proof of which

is left to the reader.

Lemma 1: Under the constraint (24)

At =0 =I At+ 0 , ,.,-

Att 0 At: 0 , Vi 1,l...,N-1.

By using (36) ,(34.) and the Cauchy-Schwartz inequality we obtain for

all i ! ,...,N-1 with At. > 0

1/

(At~~)2  1/2zA2, 1/2 +t~~ + +t J (3 +

Z A*+ /2 Z 1/2 Z+ 1/2 1F, tzZt£fi ________

(t~~) 1 2  2 + 2A'A")1

t~ (A6+; ) (At+)-~. (Atz) (-A4 ~V O At-+ ZAAt*A
xti4~
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where from each summation above we exclude all nodes Z for which the corresponding

denominator [and hence also the numerator by (24) and Lemma 1] is zero.

Similarly we obtain

-2 '~ ~ Z' + 9ai _ _ IAt!(At.)

(40)

Define now for all i=l,...N-1

= +(A~ 2+ (41)
MI~ jDt(.2 )2At + Div [Z +

-2

? = {DI D")2At +D+ + . (42)

where the summation in (41) [(42)] is over all nodes Z such that A$ 0

(A !# 0). Define also
D"+ 0 D" = 0. (43)
N

Notice that given Ai and DI+ for all downstream neighbors £ it is possible

for node i to compute DI ard D"-. Thus for each Ap satisfying (24) the

quantities D', D' -are well defined and can be computed recursively start-

ing from the destination N and proceeding upstream in a distributed manner.

The following proposition yields the desired upper bound.

Proposition 3: Lnder the constraint (24) we have

N(Af) < t ii(AOi) (44) i

where

Q.A. [ [CDI , + Ct D. . + c.. (~. .  4S)
1 2
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and if A >0

e f" -

iif < o (46)

i2it

0if A$ =0

Proof: In view of (31) it will suffice to show that

D" Dt(Ati -i)2 < ti i )2 (47)

From (38) we have

Dt D 2 (At4 .) 2 = (At~~ DU2  ) (48)i, t 1 2

(At+ 2  -2 (At) -2.
i +, DU

For all i with At* > 0 we have, using Lemma 1, At*+ > 0 so by dividing (41)
1 1

by At* we obtain
I+

2 P(O D[+ (At )2 i +At! +r +((Atm ~ ~ ~ ~ 9 At DY, $ 2 ) i(t) ~D __

(+)2 + + 2 + 2 +2
= ~ M (Ati) D''[(t). (At'] (Aid,

1At! i I. At Atf- AO?~

By using (39) we obtain

- ___-_ _ _ _
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+2 + 2 + + + 2
(At V1"  (At,) Div DO' t(A )

. Z 9. i

D ti £ (49)
i,£ Ati Z

Similarly we obtain

-2A

M (C) 2  I " - 2< I (SO)
3.2

By combining (48)-(50) and using the constraint (24) we obtain the desired

relation (47). Q.E.D.

The algorithm can now be completely defined. After the routing in-

crement A* is calculated in a distributed manner by means of algorithm

(8), (9), each node i computes the quantities Att + and At!,-. This is done

recursively and in a distributed manner by means of equations (34), (35)

starting from the "most upstream" nodes and proceeditig downstream towards

the destination. When this downstream propagation of information reaches

the destination indicating that all nodes have completed the computation

of At and At, the destination gives the signal for initiation of the

second phase of the iteration which consists of computation of the actual

routing increments Ai" To do this each node i must receive the values

of , DI + , and Di - frog its downstream neighbors Z and then determine

the increments Ai which minimize Qi(A) subject to the constraint (24)

and the new routing variables

i2.+ "i i2

Then node i proceeds to compute D!, D'f+ , and Dt" via (30), (41), and (42)

1 1
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and broadcasts these values to all upstream neighbors. Thus proceeding

recursively upstream from the destination each ncde computes the actual

routing increments A i in much the same way as the trial routing increments

AO? were computed earlier.

It is shown in Appendix B that if the starting flow vector f is

sufficiently close to being optimal then the algorithm just described

reduces the value of the objective function at each iteration and con-

verges to the optimal value. We cannot expect to be able to guarantee

theoretical convergence when the starting routing variables are far from

optimal since this is not a generic property of Newton's method which the

algorithm attempts to approximate. However in a large number of com-

putational experiments with objective functions typically arising in com-

munication networks and starting flow vectors which were far from optimal

[5] we have never observed divergence or an increase of the value of the

objective function in a single iteration. In any case it is possible to

prove a global convergence result for the version of the algorithm whereby

the expression Qi(A i) is replaced by

Qi = £ [(D! + D) AOi + (tVD1 + 8)(Ai) 2 ] (51)

where a is a sufficiently small positive scalar stepsize. In Appendix B

we show that by choosing a sufficiently small it is possible to guarantee

a reduction of the objective function at each iteration for any starting

point 0o0. This fact can be used to prove a convergence result similar

to the one of Proposition 2.

_________ -- ___ -~-~~--=~ - ~~-==v =~-
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Appendix A: Proof of Proposition 2

The proof of Proposition 2 to be given in this appendix applies to

the "all-at-once" version of algorLthm (8),(9), i.e. the one where at each

iteration k every nole i solves problem (9) for all destinations j and

adjusts the corresponding routing variables according to (8). A nearly

identical proof applies to the "one-at-a-time" version (see Gafni (11]).

The destination of flows, routing variables, etc. will be denoted within 
II

parentheses. Thus for example 0i£(j) denotes the routing variable of lini:

(i,A for destinationk j.

The following lemma bears close similarity in 
oh statement and

proof as Lemma S of (allager [1]. The proof :*lAi be x itt:-, but may be

found in [11].

Lema A. I: Let the assumptions of Proposition 2 -c) 3d. There exists a

scalar a(0,1] (depending on Do , X, and A) such that, for every oc(O,'],
0

the corresponding sequence {kI generated by algorithm (8), (9) satisfies

D(,k+l r)-D(k r) < - p [t kj) i2 wk(j) 2, k=0,1,... (A.1)

103

lirn t.(j- IA¢(j)j - 0, Yi,)-l,2,...,N, i J j (A.2)

- -, MI 0, v(ikjeL. iJ=4,2,...,N, i A j (A.3)

where p is some positive scalar (depending on a, Do, X, A),t(j) denotes

the total traffic arriving at node i which is destined for J when the

routing is *k k = ,k+l k a kd (j), f. 1  a tro t n s-Oi i i (j)- (j), and i i ( j ) are the flows
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k k~l
on link (i,R.) destined for jand corresponding to ,* respectively.

The following lemm? provides a key fact.

Lemma A.2: If cIe(O,ct] where a is as in Leimma A.1 and is a correspond-

ing sequence generated by algorithm (8), (9) there holds

AI klii, [!.(j) -A. (j)] =0 v vij 1 ,...,N, i j , (A.4)

where for all i,j,k

Ay=j max {k 0.()j E 0(iM Okl > 01 (A.S)

k {k() £ (ik(A)0.() =min {e 0) zC0() B(i,4 )(P (.6

6k - f(k7
(j2 C) -D! 2  1. ar) +(A.7

Proof: From a necessary condition for optimality for problem (9) we obtain

k

[61(j) + (j.Ajk j)]'l0> j (A.8)

for all .fj) which are feasible in problem (9). Let Z. and I. be such

that

16, 0) = (P" ) A W-)

if X Z 2 we define (j) to be the vector with components

Jc+l

4~2,() k--I if Z. 2

k-il
Oi2. (j) otherwise
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k+1 -kwhere C>O is small enough so that 'j(j)-E>O. By definition of A.(j)
I

k+lsuch an C exists and by feasibility of (jC) we have that ei(j) is also
i1

feasible. Substituting * (j) ir. (A.8) in place of *(j) we obtain

~~~i -kri)] < k

k k k .kM~)k.where Pw.Ci) and I'.i(j) are the Z- and elements of the vector t. 0jM;j) (j).

Using the assumption that all elements of M(J) are bounded above by A

we obtain

0 A4(j) & 4(j) < A tk(j) AXI Z4(i)I

This relation holds also it Z- Z since then tj(j) =A.(j). From (A.2)J

we see that the right hand side tends to zero. Equation (A.4) follows. Q.E~.D.

Given any set of routing variables e 4 * there is a unique correspond-

ing set of flows f.,(j). If we view the first derivative D! (fid- as the

length of link (i,t9) then the corresponding shortest distance from any

node i to any other node j is well defined and will be denoted by S.iM

It is easily seen using equation (6) that a sufficic-it

condition for optimality of a set of routing variables 4: is

S. -M , V-,j 1 ,...,N, i #j. (A.9)S** (a r.(j)

Furthermore there holds

,-- < DY cr(P and i~j 1 ,...,N, i 0 j. (A.10)

We hav-e the following lea:

Lema A.3: If ae(O,Zi] where a is as in Lemma A.1, {o I is a correspond-

ing sequence of algorithm (8) ,(9), m > 1 is an integer, and K is an infinite
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okk  {k-m~k
index set such that the subsequences kand converge to €

and 0 respectively then

J(, = fiJ)(v,r), (i,Y.)eL, j 1,...,N (A.11)

S. € = s. (4) , Yi,j = 1,2,...,N (A.12)

Proof: Equation (A.11) follows from (A.3), and equation (A.12) follows

from the fact that S. (4) depends on * only through the flows f.(j)(Cr).
13Z

Q.E.D.

We will use "two dimensional induction" to show that the limit of

k
any convergent subsequence of {4I satisfies the sufficient condition

for optimality (A.9). Lemma A.4 that follows represents the basic step

of the induction proof. We use repeatedly the fact that if some property

1 holds for all k with k > k and some property 2 holds for all k with k > k2

then both hold for all k with k > max (kl, k2). In what follows we will

express this by writing "if 1 holds for all k large enough and 2 holds

for all k large enough, then both hold for all k large enough".

k
Lemma A.4: Let ae(O,a] where z is as in Lema A., let {4 be a

corresponding sequence generated by algorithm (8), (9) and let

4 k-lkK *and {0 k k be two convergent subsequences of{ k. For

each j let SJ(0) be the set of distances {Si (C))j i e N). Let
3 13

SI(j),...,S (j), p < N be the distinct elements of the set S.C€) and
p_3

assume without loss of generality that 0 = SI(j) < S2 (J) <...< S (j).

Denote

t (j)) < S (j)j, q 1,...,p. (A.13)q q
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Assume that for some integer q we have:

a) D( ,r) = aD(',r) = S ( ) V i e I (j), j = 1,...,N (A.14)
ar 0) ar (j) ij q

1 1

b) For all k large enough, k C K, and for any j, if fI(j) > 0 and

k-l k-l
m C I (j) then 'DCC) > @r4 )

q arm (3) Br (j

Then:

a')

Dr(j) = S ij () Vi e I ql(j), 3 = 1,...,N (A.lS)

b') For all k large enough, kcK, and for any j, if k() > 0 and
k Ok~j

m C I q+(j) then D(jk) > D( kr)

qrm () > rnj "

Proof: Let i be such that i e I i)

and denote

1 0) = 19iSij(4) = D!.'[fi9C,,r)1 + s1 (@) z 0(i}

By the definition of shortest distance we have

Si () < D!.'f-.t(C,r)] + S1j (j), £EO(i).

Using (A.10) and the above equation

Sij(4) < D I[f. (,r) + ar(j )

or equivalently

Si(4) < .,(j) (,r) V 1 t li(j), ££O(i).

By the assumption D.i > 0 and the fact i e I (j), we have

%.(JC I() =,

1z
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Therefore by using hypothesis a) we have

[ 6i(j)(Dr) = D+ (fi,r)3 + = D! (fi£d¢,r)] + S (A.16)
itit it art(j) it it

SSij W zi ( j ) "  1 ,...,N

Since 0(i) is a finite set there exists s > 0 b;,ch that

6i(j)C(,r) - e > 6i 4,r) V W z (j), wCO(i),£ X zi(j), j = 1...,.

Since 6 (j)(0,r) is continuous in a and { k!k is a convergent
it #F

sequence, we get that for all k large enough, k K K
k-i k-lIr

6i (.)(.k'lr) > 6i kr +- Vw , i(j)_, we0(i). Z e I(j), j =,...,N.

Also 3D(,r < i, j < N, is continuous in and therefore by Lemma
3ri j) _ _

2, (A.16) and hypothesis a), for all k large enough, k e K

k-1 k-I3D (4 , BDG U r)3ri(J) > (rj).) V £ t (i), j = 1,...,N

which together with hypothesis b) and the definition of B(4;i)(j) implies

that, for all k large enough, k E K

k-ikiJfB( B ;i)(j) = , j 1,...,N (A.18)

Lertma A.2 combined with (A.17) and (A.18) implies that for all k large

enough k e K

k
iw(j) = 0 Vw £(j), = I ,...,N (A.19)

and taking the limit
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4i 0) = 0 w L (i), j = l,...,N (A.20)

Using (A.20), Lemma A.3 and hypothesis a) we have

a*it(J) Dlo k[f k,r)] + A

Z. (kfi r )j
A ~ ~D(4r)]

1

2..(j) ikLfik ( ' r ) ] Pr M

Sij( ) = Sij (4)

This together with part a) of the hypothesis establishes a').

To see b'), notice that by continuity of D(6,r) in and the
iO)

preceding equation we have that for all k la7 - ough, k e K

k k3D( r > D( ,r) £ a . j = 1,...,N . (A.21)
3r (j0 3r X(j) 3

Equations (A.21) and (A.19) hold for all i e 1q+1(j) and b') follows.

Q.E.D.

By now we have developed all the machinery for the convergence proof

of Proposition 2. We will simply make repeated application of LezmR A.4

for the proper sequences.
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Proof of Proposition 2: Take x to be as in Lemma A.1, let ms(0,] and

let {k I be a corresponding sequence generated by algorithm (8),(9).

kThe sequence {k belongs to a compact set and therefore there exists

a convergent subsequence {ok X  @. The sequence t 1kl has a

convergent subsequence {ok-l } il K C K. The sequence fok-2

1k-2
has a convergent subsequence {O 2 K C K Proceeding~~ ~k -K 2'2 1

2
this way v,! get a convergent subsequence

k-N+l
1keKl N-I KN-1 N-2

KN.IN

We have K K C ...C K and
N-1 N-2

kk-I N k 1'

By Lemma A.3 the shortest distances which correspond to

N-1' ON-2' .,o are the same. As a result, in what follows, when we

mention the set I q(j) we need not specify the limit point 0i to which

it corresponds.

Let K in Lemma A.4 be KN.I .  For each destination j, the only element

in ll(j) is j and therefore the assumptions of Lemma A.4 hold for

I1 (j) and the pairs of sequences

k , {tk-1} -}, {{ k-1} k-2 I k-N+2} EKk-N+1kY

Applying Lemma A.4 for q = 1, we obtain that its hypothesis holds for

q = 2 and the pairs of sequences ({k k K, {-k-l} -KI,.. ,

k-N+3 ~{k-N+2}kEK
to k-N ])  Proceeding this way we note that thekcK' ke.
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hypothesis of Leumia, k.4 holds for q = N-i and the pair
({ kk { k-l k )k , {0 I Applying Lemma A.4 again we see that the

conclusion of its part a') holds for q = N-i, i.e., equation (A.15)

holds for I (j) j = 1,... ,N. Since every node in the network belongsN

to IN (j) ,  = 1,...,N, it follows that (A.9) is satisfied, and hence

is optimal. Q.E.D.
QI

U,
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Appendix B

In this appendix we analyze the descent properties of the algorithm

of Section 4. We assume a single destination but the proof extends trivial-

ly to the case where we have multiple destinations and the algorithm is

operated in the one destination at a time mode. In view of the fact that

each function D is strictly convex it follows that there is a unique

optimal set of total link flows {f(I1(i,Z)sL}. It is clear that given

any e>O there exists a scalar y such that for all feasible total link

flow vectors f satisfying

Ifi£ fi l : < Y , v(i,Z)eL (B.!)

we have

MI " D" " (f -

l+ D- iA - V (i,Z)7L. (B.)

The strict I.ositivi y assum)tion t' also implies that for each

y >O there ex:sts a scalar *(y,) ,uch that every feasible f satisfy-

ing Dij(fi,) < 6(yC) ais sisfles (B.1) and hence also (B.2). Further-
i,Q

more 6(y ) can be taken arbitrarily large provided y is sufficiently
SC

large. We will make use of this fact in the proof of the subsequent

result.

Proposition B.l: Let and * be two successive vectors of routing
variables generated by the algorithm of Section 4 (with stepsize a=l)

and let f and f be the corresponding vectors of link flows. Assume

that for some E with 0 < C < 1 we have

D it(f it) < 6(YE)  (B.3)

where y is the scalar corresponding to e as in (B.l), (B.2), and 6(y )
ES

is such that (B.1) [and hence also (B.2)] holds for all feasible f

satisfying (B.3). Then
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D(O,r) -D(4,r) <-p(e) t. t(DI" +8)c~.~ (B. 4)
(i~)eLi

21-4 e-2 e _
where ()- 2al j= 2 J o l wt 2_ i

Proof: Let Af be the increment of flow corresponding to the increment

4,(b. We have

DQ ,r) - D(o,r) = D (f+nAf (Afi )2DIz(fiq+TIAf
i ,t TJ=O ,

for some n*[O,l]. Denoting D:.Z(fiX+n*Af.k) = D, and using an argument

similar to the one employed in Section 4 [cf. (28)-(31)] we obtain

D(,r) - D(o,r) = Ao.i2 D!+p,) CD" -0" "
-~ ~ ~ D + Di£ DU )Ati~~ ni

, i,2, i.i.. ii

- )2 " 21ii.x

it (B.5)

We will derive upper bounds foz each of the three terms in the right

side of (B.5).

From the necessary condition for AOi to minimize the function

Qi(Ai4i) of (45) subject to the constraint (24) we obtain

X [D!+ D+ (tMiO+D if)ApilAniq. < 0

or

(D + - (tn Ms i Z)e(AO n (B.6)it 9.k -9- it

There is no loss of generality in replacing each function D by
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a function D which is continuously differentiable, is identical with D.

on the set of flows satisfying (B.I) and is quadratic outside this set,

provided that, as part of the subsequent proof, we show that

Di (fi ) < 6(y.) for all ne[0,l]. By using this device we can assume

that D" satisfies (B.2) for all f Hence from (B.2)

- 2< (l+a) -1 (B.7)

it

IsDit 2
Dit

Using (47), (B.7), the Cauchy-Schwartz inequality and the arithaetic-g nmetric

inequality we have

Y'(E! -MI ) At 11 < [l)2 1 D'.' IatijI2 ij t.

it Ii i I I £

< 002_ 11la t - 2 12 1 It 2~ (B.9)
bit i 1t ik t' 1 t~ M, ) £ (tiAi 2

2_ + - 2

i, i,

Using again (47) and (B.8) we obtain for each i

MI [Ati ) + (ti )

2 -2 + M 2

- 2(I 2 .[ii£~ D 9.(tiAit) ]

2 2
i1+ t t~
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By combining now (B.5), (B.6), (A.9), pnd (B.10) we obtain

D{O,r)- D{ ,r) < [-I+(I+c)2- t.i(tiDt£+ ia)(A i 2

2 2 )i,()eL

= - p ( C ) t t ( t ' D ^ V , + i £ i ' i ) 2
(i )CLit) 1 iii

and (B.4) is proved. It is also straightforward to verify that

P(C) > 0 for E in the interval (0, -1). Q.E.D.

The preceding proposition shows that the algorithm of Section 4

does not increase the value of the objective function once che flow

vector f enters a region of the form {fj I D(.(fi) < 6(Y,)}, and that the size

of this region increases as the third derivative of D becomes smaller.

Indeed if each function D.. is quadratic then (B.2) is satisfied for all

e>O eid the algorithm will not increase the value of the objective for

all f.

The preceding analysis can be easily modified to show that if we

introduce a stepsize a as in (51) then the algorithm of Section 4 is a

descent algorithm at all flows in the region {ff I Di£(fi£) < 6(y,)} wherei ££

From this it follows that given any starting point °o, there exists

a scalar 7>0 such that for all stepsizes cze(O,YJ the algorithm of

Section 4 does not increase the value of the objective function at each

subsequent iteration.
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